匿名使用者
匿名使用者 發問時間: 科學天文與太空 · 1 0 年前

台北市立天文館的”閏年”資料是錯的?

http://www.tam.gov.tw/faq/calendar-0409277-2.htm

我覺得有問題的地方在這

"逢4000的倍數不閏, 例如:西元4000、8000年,不閏年。 "

我們所使用的曆法是"格里曆"

其定義如下

http://zh.wikipedia.org/wiki/%E6%A0%BC%E9%87%8C%E6...

----------------------------------------------------------------------------

格里曆的閏年

閏年的計算方法:公元紀年的年數可以被四整除,即為閏年;世紀數被100整除為平年,被100整除也可被400整除的才為閏年。紀元是從傳說的耶穌誕生那年算起。

格里曆每月有月大、月小和月平的說法,月大為31天,月小為30天,月平只有2月,為28天(閏年29天)。

----------------------------------------------------------------------------

英文版

http://en.wikipedia.org/wiki/Gregorian_calendar

----------------------------------------------------------------------------

Leap years are all years divisible by 4, with the exception of those divisible by 100, but not by 400. These 366-day years add a 29th day to February, which normally has 28 days. Thus, the essential ongoing differential feature of the Gregorian calendar, as opposed to the Julian calendar, is that the Gregorian omits 3 leap days every 400 years. This difference would have been more noticeable in modern memory, were it not for the fact that the year 2000 was a leap year in both the Julian and Gregorian calendar systems.

----------------------------------------------------------------------------

其中都沒有提到"逢4000的倍數不閏"

而在中文版的又提到"能被3200整除的也不是閏年"

http://zh.wikipedia.org/wiki/%E9%97%B0%E5%B9%B4

-----------------------------------------------------------------------------

計算閏年的方法

格里曆紀年法中,能被4整除的大多是閏年,能被100整除而不能被400整除的年份不是閏年,能被3200整除的也不是閏年,如1900年是平年,2000年是閏年,3200年不是閏年。在更早的儒略曆紀年法中,能被4整除的都是閏年。

-----------------------------------------------------------------------------

我想這些資料是否有誤?

1 個解答

評分
  • 匿名使用者
    1 0 年前
    最佳解答

    應該說資料不完確

    事實上我上次也發現了這件事!

    目前的定義是

    4的倍數閏

    100的倍數不閏

    400的倍數閏

    -----------------------------

    你可能沒看到WIKI的另一段文章

    從中文網搜尋"閏年"再換成英文

    或是英文網搜尋"Leap year"

    上面有這段

    ==================================================

    Long term leap year rules

    The accumulated difference between the Gregorian calendar and the vernal equinoctial year amounts to 1 day in about 8,000 years. This suggests that the calendar needs to be improved by another refinement to the leap year rule: perhaps by avoiding leap years in years divisible by 8,000.

    (The most common such proposal is to avoid leap years in years divisible by 4,000 [1]. This is based on the difference between the Gregorian calendar and the mean tropical year. Others claim, erroneously, that the Gregorian calendar itself already contains a refinement of this kind [2].)

    Hypothetical 128 year based leap years has been proposed, and it can be adopted directly without any modification to current leap year calculations until the year 2048.

    However, there is little point in planning a calendar so far ahead because over a timescale of tens of thousands of years the number of days in a year will change for a number of reasons, most notably:

    Precession of the equinoxes moves the position of the vernal equinox with respect to perihelion and so changes the length of the vernal equinoctial year.

    Tidal acceleration from the sun and moon slows the rotation of the earth, making the day longer.

    In particular, the second component of change depends on such things as post-glacial rebound and sea level rise due to climate change. We can't predict these changes accurately enough to be able to make a calendar that will be accurate to a day in tens of thousands of years.

    ==============================================================

    上面文章其實就有說

    3200與4000的倍數是目前天文學家候選的閏年規則

    但未通用,因為現在才2007年!

    --------------------------------------------------------------

    回到現實,閏年的最大目的不是搞混大家去記曆法

    而是使曆法能趨向真正的一年!

    所以不必太擔心這個問題!

還有問題?馬上發問,尋求解答。