妮妮 發問時間: 科學其他:科學 · 1 0 年前

如何解決此力學題目?

1.Determine the dimensions of c ,w,k and p , m

d2x/dt2 + c dx/dt + kx = pcoswt.(其中的2為平方,打不出來)

M=mass ,x=length, t=time

請幫我解釋一下問題,還有如何解問題

謝謝大家^^

已更新項目:

非常謝謝b大的回答

方程式修正為 md2x/dt2 + c*dx/dt + kx = p*cos(w*t)

謝謝

1 個解答

評分
  • ?
    Lv 7
    1 0 年前
    最佳解答

    題目在問方程式 d2x/dt2 + c*dx/dt + kx = p*cos(w*t) 中 c, w, k, p 和 m的度量, M代表質量, x代表距離, t代表時間.

    x對t的兩次微分是加速度,故左右各項最後的度量必須是加速度, 單位形式為 m/s2.

    dx/dt 度量為速度, 單位為 m/s, 故 c為時間的倒數, 單位為 1/s

    x度量為距離, 單位為 m, 故 k為時間倒數的平方, 單位為 1/s2

    w*t 為無單位常數, 故 w為時間的倒數, 單位為 1/s

    cos(w*t)為無單位常數, 故 p為加速度, 單位為 m/s2.

    方程式中沒有 m.

    2007-10-10 10:45:11 補充:

    第一項改為 md^2x/dt^2後,成為m乘加速度,第二項仍然是c乘速度,第三項仍然是k乘距離,它們的共同單位是能量,單位是kg.m^2/s^2.

    因d^2x/dt^2是加速度(單位是m/s^2),所以m是質量乘距離,單位為kg.m

    dx/dt是速度(單位是m/s),所以c是動量,單位是kg.m/s

    x是距離(單位是m),所以k是力,單位是kg.m/s^2

    p為能量,單位是kg.m^2/s^2

    w是時間的倒數,單位是1/s.

還有問題?馬上發問,尋求解答。