1 個解答
評分
- Regal LLv 71 0 年前最佳解答
f(θ)=2√3cos^2(θ)+sin(2θ)
求max and min
f(θ)=2√3cos^2(θ)+sin(2θ)
=2√3cos^2(θ)-√3+sin(2θ)+√3
=√3(2cos^2(θ)-1)+sin(2θ)+√3
=√3cos(2θ)+sin(2θ)+√3
=2((√3/2)*cos(2θ)+(1/2)*sin(2θ))+√3
=2(sin(π/3)*cos2θ+cos(π/3)*sin2θ))+√3
=2(sin(π/3+2θ))+√3
當sin(π/3+2θ)=1, θ=π+π/12時有max
=2*1+√3
=2+√3
≒3.7320
當sin(π/3+2θ)=-1, θ=π+7π/12時有min
=-2+√3
≒-0.2679
答:max=2+√3, min=-2+√3
不懂請問!
2007-11-12 01:26:09 補充:
更正:
θ=nπ+π/12(n=N)
θ=nπ+7π/12(n=N)
加個n.
還有問題?馬上發問,尋求解答。