Copestone 發問時間: 科學數學 · 1 0 年前

〔高中幾何、組合〕分割等邊三角形

令 T 為在平面上,邊長為 1 的正三角形〔包括邊界及內部〕。T 的一個 n 分割 ℘ 就是把 T 分成 n 個互不相交的非空集合,{T_1, ..., T_n}。

定義 K(n) = inf_℘ {x: max{diam(T_i), i=1→n} ≤ x, ℘ = {T_1, ..., T_n} 是 T 的一個 n 分割}。

求 K(3) 及 K(5)?

白話說:就是隨意把 T 分成 n 分,但要求每份都不能太大,即直徑都 ≤ x, 求這些 x 的最小可能值?

註:平面上的非空集合 A 之直徑定義為:

diam(A) = sup{|x - y| : x, y ∈ A}.

認為太容易可以試求 K(6),此為如有超過兩個答案平手時的加分題。

已更新項目:

提示:鴿籠原理!!

2 個已更新項目:

定義 diam(A) 中,取 x, y ∈ A 時,這個 x 是平面上的點,跟前面那個為實數的 x 完全無關,雖然應該不會引起誤解,但我也不該用同一個符號代表不同意義的東西。

To Xie: 我用的絕對是平面上的歐氏距離,至於一個集合的直徑,還有更自然的定義麼?何以會誤解題意?

3 個解答

評分
  • 1 0 年前
    最佳解答

    圖片參考:http://i272.photobucket.com/albums/jj186/xieh01/K5...

    let K(5)=x

    AP=PQ=x=2QC/sqrt3

    AQ=1-QC=1-sqrt3*x/2

    AH=QH=AQ/2=1/2-sqrt3*x/4

    PH=CH/sqrt3=(1-AH)/sqrt3=(1/2+sqrt3*x/4)/sqrt3

    x^2=PH^2+QH^2

    =1/4+3xx/16+sqrt3*x/4)/3+1/4+3xx/16-sqrt3*x/4)

    =((4+3xx+sqrt3*4x)+(12+9xx-3sqrt3*4x))/48

    =(4+3xx-2sqrt3*x)/12

    9xx+2sqrt3*x-4=0

    x=(sqrt(39)-sqrt(3))/9

    ~ 0.501438576758836

    2009-10-20 18:28:42 補充:

    let K(6)=x

    x/sqrt3+0.75x=1/sqrt3

    x(4+3sqrt3)=4

    x=4/(4+3sqrt3)

    =4(3*SQRT(3)-4)/11

    =0.434964517

    2009-10-20 18:30:34 補充:

    K(6)圖見"http://i272.photobucket.com/albums/jj186/xieh01/K6...

    2009-10-20 20:37:19 補充:

    K(6)=K(3)*2/3=2/3/sqrt3

    圖見"http://i272.photobucket.com/albums/jj186/xieh01/K6...

    2009-10-20 21:43:51 補充:

    "註:平面上的非空集合 A 之直徑定義為:diam(A) = sup{|x - y| : x, y ∈ A}."

    我是用歐式幾何平面上的直徑, 但是你的題目原來並不是歐式幾何平面上的直徑.

    2009-10-20 22:15:11 補充:

    照你的定義, K(5)=1/2

    取三頂點ABC及三邊中點PQR

    if K(5)比 1/2小, 則蓋住這六點中任一點的區 無法蓋住其他五點任一點

    ==> 要6個區才能蓋住這6點, 不合

    ==> 所以K(5)不比1/2小

    取三頂點ABC及三邊中點PQR把ABC分為 四個全等正三角形, 再將任一區隨意分為2區

    ==> K(5)不比1/2大

    ==> K(5)=1/2

    ---

    同理 K(4) =1/2

    2009-10-20 23:00:11 補充:

    照你的定義, K(6)=1/(1+sqrt(3))

    圖見 http://i272.photobucket.com/albums/jj186/xieh01/K6...

    在AC上取點M, 且CM=1/(1+sqrt(3))

    在AB上取點N, 且BN=1/(1+sqrt(3))

    在BC中點取H,

    BC中垂線上取點O, 且AO=1/(1+sqrt(3))

    2009-10-20 23:00:19 補充:

    取三頂點ABC及4點OPQH

    if K(6)比 1/(1+sqrt(3)小, 則蓋住這7點中任一點的區 無法蓋住其他6點任一點

    ==> 要7個區才能蓋住這7點, 不合

    ==> 所以K(6)不比1/(1+sqrt(3))小

    K(6)分法: 圖見 http://i272.photobucket.com/albums/jj186/xieh01/K6...

    ==> K(6)不比1/(1+sqrt(3))大

    ==> K(6)=1/(1+sqrt(3))

    2009-10-20 23:26:42 補充:

    何以會誤解題意? 我以為是外接圓的直徑

    我之前算的"K(5)" 是: 用5個最小的等徑圓去 蓋滿 整個T

  • 1 0 年前

    Meowth Xie:

    你只有 K(3) 是對的。其餘 K(5) 及 K(6) 都算錯。

    算 K(5) 其實比算 K(3) 還要簡單。K(6) 比較複雜,暫時不在本題評估之內。

    2009-10-21 00:14:16 補充:

    問這題是源於:

    http://tw.knowledge.yahoo.com/question/question?qi...

    那是很不簡單的一題,n = 15 是否最小值並不顯然,事實上,K(15) 根本就不是 (1/4),而是更小。這題不好做,是因為 K(14) 非常接近 (1/4),真的求取此值才知道最小的 n 是 15 還是 14。〔n = 13 也不好做,容易一點,可求出比 (1/4) 大一點,所以被排除〕很麻煩,Xie 有空去算一下 K(14) 吧,呵。

  • 1 0 年前

    高中生應該不知道何謂inf 吧@@

還有問題?馬上發問,尋求解答。