實分析(證明題)有關於非負的可積simple函數
If f is a nonnegative integrable simple function and ∫fdu=0,then f=0 a.e.
1 個解答
評分
- Scharze spaceLv 71 0 年前最佳解答
先證一個性質: f is nonegative measurable function and ∫_Afdu=0 for every measurable set , then f=0 a.e
proof Let E={x: f(x)>0}, E_n={x: f(x)>1/n)} then E=∪E_n 且 E_n is 是遞增的可測集合列
故(1/n)m(E_n)=∫_E_n 1/ndu<∫_E_n fdu<=∫fdu=0 for all n
=>m(E_n)=0 for all n
=>m(E)=0
所以 f=0 a.e
because f is nonegative integrable simple function for every measurable set F
0<=∫_Ffdu<=∫fdu=0
=>∫_Ffdu=0
故由以上的性質 f=0 a.e
參考資料: 以前所學
還有問題?馬上發問,尋求解答。