[數學]高微的問題 急
最近做得不太會所以上來問問看1.
(a)Is it true that int(A) ∪int(B) = int(A ∪B)??(b) Is it true that int(A) ∩ int(B) = int(A ∩ B)??(c) Is it true that int(cl(A)) = int(A)? (d) Is it true that cl(A) ∩ A = A?
(e) Is it true that cl(int(A)) = A?
2. (a) Discusswhether the following sets are open or closed:
a. (1, 2) in R
b. [2, 3] in R
c. {r ∈ ]0, 1[| r is rational} i^R d. {(x, y) ∈ R^2 | 0 < x ≤ 1} inR^2
e. {x ∈ R^n | ||x|| = 1} in R^n(b) Determine the interiors, closures, andboundaries of the upper sets.
3.Find the accumulation points of the following sets in R^2:
(a) {(m, n) | m, n integers}
(b) {( p, q) | p, q rational}
(c) {(m/n, 1/n) | m, n integers, n ≠ 0}
(d) {(1/n + 1/m, 0) | n,m integers, n ≠ 0,m ≠ 0}
2 個解答
- 1 0 年前最佳解答
1.
(a) 錯
反例:令 A, B ⊂ R,A = Q,B = (R\Q)
than int(A) = φ ,int(B) = φ
int(A)∪int(B) = φ ≠ R = int(A∪B) = int(R)
(b) 對
證明:
(左包含於右)
令 x 屬於 int(A)∩int(B)
則存在 r > 0 使得 D(x , r) 同時包含於 A,且包含於B
=> D(x , r) 包含於 A∩B
=> x 屬於 int(A∩B)
=> int(A)∩int(B) ⊂ int(A∩B)
(右包含於左)
令 x 屬於 int(A∩B)
則存在 r > 0 使得 D(x , r) 包含於 A∩B
=> D(x , r) 同時包含於 A,且包含於B
=> x 屬於 int(A)∩int(B)
=> int(A∩B) ⊂ int(A)∩int(B)
=> int(A∩B) = int(A)∩int(B) 得證
(c) 錯
反例:令 A = Q
int(cl(A)) = int(R) = R,int(A) = φ
(d) 對
證明:由定義,A ⊂ cl(A)
=> cl(A) ∩ A = A
(e) 錯
反例:A 若不是 closed set 則不成立
2.
(a)
a. open
b. closed
c. 非 open 也非 closed
實數線上,任何有理數點的 neighborhood 必然含有無理數點
=> 非 open
而它的補集也因為無理數點的 neighborhood 必然含有有理數點的關係,非open
=> 非 closed
d. 非 open 也非 closed
e. closed
(b)
a. interior : (1 , 2),closure : [1 , 2],boundary : {1 , 2}
b. interior : (2 , 3),closure : [2 , 3],boundary : {2 , 3}
c. interior : φ,closure : [0 , 1],boundary : {r ∈ [0 , 1] | r ∈ Q}
d. interior : {(x, y) ∈ R^2 | 0 < x < 1}
closure : {(x, y) ∈ R^2 | 0 ≤ x ≤ 1}
boundary : {(x, y) ∈ R^2 | x = 0 or 1}
e. interior : φ,closure : {x ∈ R^n | ||x|| = 1},boundary : {x ∈ R^n | ||x|| = 1}
3.
(a) no accumulation points
(b) {x | x ∈ R^2}
(c) {(x , 0) ∈ R^2 | x ∈ [0 , infinity)∩Q}∪{(0 , 1/n) ∈ R^2 | n is an integer}
(d) {(x , 0) ∈ R^2 | x = 0 or x = 1/n , n is an integer}
2011-01-18 22:35:31 補充:
sorry,
3(c) 應該是
{(x , 1/n) ∈ R^2 | x ∈ [0 , infinity)∩Q , n is an integer}∪{(0 , 0)}
- linchLv 71 0 年前
1 (e)
即使 A 是 closed 也未必成立
例如單點
2011-01-18 13:47:19 補充:
3(c) 也有一點問題 ^_^
2011-01-18 23:50:21 補充:
x ∈ R 即可吧!!
例如
(1/1,1/1), (14/10,1/10), (141/100,1/100), (1414/1000,1/1000),
(14142/10000,1/10000), (141421/100000, 1/100000) ....
accumulation point 是 (sqrt(2), 0)
2011-01-19 06:47:42 補充:
3(c) {(x,0)|x∈ R} 比較合理