承紘 發問時間: 社會與文化語言 · 9 年前

摩擦力原文翻譯

Macroscopic laws of friction do not generally apply to nanoscale

contacts. Although continuum mechanics models have been

predicted to break down at the nanoscale1, they continue to be

applied for lack of a better theory. An understanding of howfriction

force depends on applied load and contact area at these scales is

essential for the design of miniaturized devices with optimalmechanical

performance2,3. Here we use large-scale molecular dynamics

simulationswith realistic force fields to establish friction laws in dry

nanoscale contacts. We show that friction force depends linearly on

the number of atoms that chemically interact across the contact. By

defining the contact area as being proportional to this number of

interacting atoms,weshowthat themacroscopicallyobserved linear

relationship between friction force and contact area can be extended

to the nanoscale. Our model predicts that as the adhesion between

the contacting surfaces is reduced, a transition takes place from

nonlinear to linear dependence of friction force on load. This transition

is consistent with the results of several nanoscale friction

experiments4–7. We demonstrate that the breakdown of continuum

mechanics can be understood as a result of the rough

(multi-asperity) nature of the contact, and show that roughness

theories8–10 of friction can be applied at the nanoscale.

4 個解答

評分
  • 9 年前
    最佳解答

    承紘兄,nanoscale contacts 要翻成 「奈米級的接觸」還是「奈米級的的接點」?

    您可以回答我這個問題嗎?這篇文章我翻到一半,突然有這個疑問。

    2012-02-10 05:52:40 補充:

    Macroscopic laws of friction do not generally apply to nanoscale

    contacts. Although continuum mechanics models have been

    predicted to break down at the nanoscale1, they continue to be

    applied for lack of a better theory. An understanding of howfriction

    force depends on applied load and contact area at these scales is

    essential for the design of miniaturized devices with optimalmechanical

    performance2,3. Here we use large-scale molecular dynamics

    simulationswith realistic force fields to establish friction laws in dry

    nanoscale contacts. We show that friction force depends linearly on

    the number of atoms that chemically interact across the contact. By

    defining the contact area as being proportional to this number of

    interacting atoms,weshowthat themacroscopicallyobserved linear

    relationship between friction force and contact area can be extended

    to the nanoscale. Our model predicts that as the adhesion between

    the contacting surfaces is reduced, a transition takes place from

    nonlinear to linear dependence of friction force on load. This transition

    is consistent with the results of several nanoscale friction

    experiments4–7. We demonstrate that the breakdown of continuum

    mechanics can be understood as a result of the rough

    (multi-asperity) nature of the contact, and show that roughness

    theories8–10 of friction can be applied at the nanoscale. 宏觀的摩擦力定律,並不全面地適用於奈米級的接觸。雖然有人曾指出,連續介質力學上的模型,在奈米級無法適用,但是因為缺乏更好的理論,所以在奈米級中,還是繼續地應用摩擦力定律。為了設計出最佳機械性能的微型裝置,必須了解摩擦力是如何取決於接觸面積以及所受負荷。本研究中,我們使用放大尺度的分子動力學模擬裝置,以及真實的力場,來建立起奈米級無電壓接觸的摩擦力定律。我們證實,摩擦力取決於「與接觸面起化學相互作用的原子數量」,且呈線性關係。接觸面積和起相互作用的原子數量成正比,而我們靠著定義接觸面積,證實了在宏觀中觀察到的,摩擦力和接觸面積之間的線性關係,可延用至奈米級。實驗模型指出,當接觸表面之間的附著力減少,負載的摩擦力就會從非遵從線性關係,開始變化為遵從線性關係。這個變化和數個奈米摩擦力實驗的結果一致。我們證實了接觸的粗糙不平,引起連續介質力學在奈米級的失靈。以及證實摩擦力關於粗糙不平的理論,在奈米級可以適用。

  • 雲凍
    Lv 6
    9 年前

    摩擦的巨觀法則一般並不適用於奈米接觸面...

  • 9 年前

    摩擦的宏觀法律不一般應用於納米尺度在連絡人。雖然已經連續介質力學模型在 nanoscale1 打破預言,它們繼續應用不足的更好的理論。對 howfriction 的理解力取決於應用負載和這些尺度的接觸面積是必需的 optimalmechanical 的微型設備的設計performance2,3。在這裡我們使用大型分子動力學simulationswith 現實力場建立在幹摩擦定律納米尺度的連絡人。我們展示摩擦力取決於線性上化學跨連絡人進行交互的原子的數目。由定義為此數目的成比例的接觸面積原子相互作用,線性 weshowthat themacroscopicallyobserved可以擴展之間的摩擦力和接觸面積的關係以納米尺度。我們的模型預測,作為之間的粘連接觸表面減少,從發生轉型非線性負載的摩擦力的線性依賴。這種過渡與幾個納米摩擦的結果是一致的experiments4–7。我們在證明有的連續體破裂力學可以理解粗糙的結果(塑性) 性質的連絡人,並顯示該粗糙度可以在納米尺度應用 theories8–10 的摩擦

  • 9 年前

    張貼大量內容尋求翻譯。

    要求翻譯的內容,如超過五行,將予以強制移除。 如將文章分段張貼發問,則視同連續以相同的句型發問,將予以扣點或停權處份。建議網友在發問翻譯的問題時,先做好自己份內的功課,再針對不瞭解的部分尋求網友協助,而不是一味要求網友代勞翻譯整篇文章。

還有問題?馬上發問,尋求解答。