# 85屆奧斯卡

### 2 個解答

• 匿名使用者
7 年前
最佳解答

交大游凱復的心得整理:

Examples

The cube can generate all the convex uniform polyhedra with octahedral symmetry. The first row generates the Archimedean solids and the second row the Catalan solids, the second row forms being duals of the first. Comparing each new polyhedron with the cube, each operation can be visually understood. (Two polyhedron forms don't have single operator names given by Conway.)

Cube

"seed" ambo

(rectify) truncate bitruncate expand

(cantellate) bevel

(omnitruncate) snub

Uniform polyhedron-43-t0.png

C Uniform polyhedron-43-t1.png

aC = djC Uniform polyhedron-43-t01.png

tC = dkdC Uniform polyhedron-43-t12.png

tdC = dkC Uniform polyhedron-43-t02.png

eC = aaC = doC Uniform polyhedron-43-t012.png

bC = taC = dmC = dkjC Uniform polyhedron-43-s012.png

sC = dgC

dual join kis

(vertex-bisect) ortho

(edge-bisect) meta

(full-bisect) gyro

Uniform polyhedron-43-t2.png

dC Rhombicdodecahedron.jpg

jC = daC Triakisoctahedron.jpg

kdC = dtC Tetrakishexahedron.jpg

kC = dtdC Deltoidalicositetrahedron.jpg

oC = deC = daaC Disdyakisdodecahedron.jpg

mC = dbC = kjC Pentagonalicositetrahedronccw.jpg

gC = dsC

• 登入以對解答發表意見
• 7 年前

看過今天(2/28)的電視節目表並沒有播ㄛ

• 登入以對解答發表意見