匿名使用者
匿名使用者 發問時間: 電腦與網際網路硬體附加元件 · 8 年前

幫翻譯這Stimuli-responsive........

Stimuli-responsive polymeric core−shell microcapsules are promising materials for controlled release applications.1−8 Capsules of this type typically release their contents either through induced chemical changes in the polymers that compose the shell or via bulk structural changes to the shell wall.1 These traditional triggered-release strategies provide responses that are nonamplified: i.e., a single membrane−signal interaction produces one small structural change in the shell wall, whereas release occurs only after many signals have reacted with and altered the shell wall. In contrast, a new release strategy has emerged where shell walls are formed from polymers that depolymerize continuously and completely from head-to-tail when an appropriate signal is detected by the polymer.1,9 This depolymerization reaction provides an amplified response that, in theory, increases the sensitivity of the capsules as well as their rate of response once the appropriate signal is detected. Despite these favorable attributes, however, only one example of a stimuli-responsive core−shell polymeric microcapsule made from a head-to-tail depolymerizable polymer has been demonstrated to date,10 with additional related examples demonstrated in responsive nanocapsules and micelles.11,12 Further development of this depolymerizable shell wall concept has been hindered by the limited number of polymers that are capable of depolymerizing from head-to-tail in response to a specific signal, as well as by substantial challenges in fabricating core−shell microcapsules using polymers that are primed to depolymerize. In this article, we describe the use of flow-focusing microfluidic strategies for fabricating these types of depolymerizable core−shell microcapsules.13−15 This technique is highly reproducible, readily forms capsules that contain aqueous interiors, is capable of generating capsules that can be suspended in an aqueous solution that differs from the solution within the capsule,

2 個解答

評分
  • 瓢蟲
    Lv 7
    8 年前
    最佳解答

    刺激敏感聚合物core−shell微膠囊典型地是有為的材料為這個類型發行受控發行applications.1−8膠囊他們的內容二者之一通過導致的化學變化在組成殼的聚合物或通過對殼這傳統觸發發布戰略的wall.1的大塊結構變化提供是nonamplified的反應: 即,唯一membrane−signal互作用在殼牆壁導致一小結構變化,而發行發生,在許多信號起了反應與并且修改了殼牆壁之後。 相反,一個新的發行戰略湧現了殼牆壁從連續解聚,并且完全地從head-to-tail的聚合物的地方被形成,當一個適當的信號是由polymer.1時查出的, 9這解聚作用反應提供一個被放大的反應,在理論上,增加膠囊敏感性並且他們的反應的率,一旦適當的信號被查出。 儘管這些有利屬性,然而,仅由一個head-to-tail depolymerizable聚合物做的一個刺激敏感core−shell聚合物微膠囊的一個例子迄今被展示了, 10以在敏感nanocapsules展示的另外的相關例子,并且micelles.11, 12進一步發展這個depolymerizable殼牆壁概念由是能解聚從head-to-tail以回應一個具體信號聚合物的有限數字在製造的core−shell微膠囊妨害了,並且由堅固挑戰使用填裝解聚的聚合物。 在這篇文章,我們描述對流動聚焦microfluidic戰略的用途為製造這些類型的depolymerizable core−shell microcapsules.13−15這個技術是高度可再生的,欣然形成包含含水內部的膠囊,是能引起在水溶液可以暫停與解答在膠囊之內不同的膠囊,

  • 8 年前

    刺激響應性聚合物的芯 - 殼微膠囊是有希望的材料控釋此類型的應用。 8膠囊通常可以通過釋放它們的內容引起的化學變化的聚合物構成的殼中,或通過本體的結構變化的殼體wall.1這些傳統的觸發釋放戰略提供非擴增的反應:即,一個單膜信號相互作用產生一個小的結構性變化,而在殼壁發生後,才釋放很多信號反應和改變殼壁。與此相反,已經出現一個新的發布策略,殼壁由解聚的聚合物,連續地和完全地從一個適當的信號時,檢測到由polymer.1頭 - 到 - 尾9 ,該解聚反應,在提供一個放大的響應理論,增加了靈敏度的膠囊,以及適當的信號被檢測到後,其響應率。然而,儘管有這些有利的屬性,只是一個例子的刺激響應性的芯 - 殼聚合物製成的頭 - 尾的解聚的聚合物的微膠囊已證明日, 10與附加的相關的實例演示了在響應納米膠囊和micelles.11 12這個解聚的殼壁的概念的進一步發展受到阻礙聚合物的解聚的頭 - 尾,響應一個特定的信號,以及在製造核 - 殼聚合物使用的微膠囊由大的挑戰,並能夠由數量有限的都準備解聚。在本文中,我們描述了使用流量,這些類型的解聚核 - 殼microcapsules.13 - 15這種技術用於製造微流體聚焦戰略高度重複性的,容易形成膠囊包含水溶液的內飾,能夠生成膠囊,可以在水溶液中懸浮的不同,從該溶液在膠囊內,

    參考資料: 自己和翻譯
還有問題?馬上發問,尋求解答。