高中數學共三題
1 個解答
評分
- 螞蟻雄兵Lv 77 年前最佳解答
1
設 f(x)=q(x)(x^2+x+1)+ax+b
(x+2)f(x)=q(x)(x+2)(x^2+x+1)+(x+2)(ax+b)
=q(x)(x+2)(x^2+x+1)+[ax^2+(2a+b)x+2b]
=q(x)(x+2)(x^2+x+1)+a(x^2+x+1)+[(a+b)x+2b-a]
So
a+b=7,2b-a=5
3b=12
b=4
a=3
2
設f(x)=a(2n)x^2n+a(2n-1)x^(2n-1)+a(2n-2)x^(2n-2)+…+a(0)
f(1)=a(2n)+a(2n-1)+a(2n-2)+a(2n-3)+…+a(0)
f(-1)=a(2n)-a(2n-1)+a(2n-2)-a(2n-3)+…+a(0)
f(1)+f(-1)=a(2n)+a(2n-2)+a(2n-4)+…+2a(0)
So
f(x) 偶數項係數和[f(1)+f(-1)]/2
設g(x)=f(x^2+2)
g(x) 偶數項係數和[g(1)+g(-1)]/2
g(1)=f(3)=20
g(-1)=f(3)=20
f(x^2+3)偶數項係數和 20
3
設 f(x)=a(x-1995)(x-1996)+b(x-1995)+11
f(1996)=b+11=6
b=-5
f(x)=a(x-1995)(x-1996)-5(x-1995)+11
f(1997)=a(2)(1)-5(2)+11=3
2a=2
a=1
f(x)=(x-1995)(x-1996)-5(x-1995)+11
f(2000)=(5)(4)-5(5)+11=6
還有問題?馬上發問,尋求解答。