log4a=log16b=log 64(a+b),求a之值
設a,b為正實數且log4a=log16b=log 64(a+b),求a之值
註:4,16及64為底數,a及b為真數
1 個解答
評分
- 少年時Lv 76 年前最佳解答
log(4) a = log(16) b = log(64) (a + b)
==> log a / log 4 = log b / log 16 = log (a + b) / log 64
==> log a / log 4 = log b / log 16 = log (a + b) / log 64
所以
log a / log 4 = log b / log 16
==> log a / log 4 = log b / 2 log 4
即 a^2 = b ⋯⋯⋯⋯⋯⋯ (i)
log a / log 4 = log (a + b) / log 64
==> log a / log 4 = log (a + b) / 3 log 4
即 a^3 = a + b
==> a^3 = a + a^2 ⋯⋯ (由 (i))
==> a^3 - a^2 - a = 0
==> a(a^2 - a - 1) = 0
==> a = 0 (捨去) 或 a=(1+√5)/2 或 a=(1-√5)/2 (捨去)
答案:a=(1+√5)/2
(代入 (i), 得 b=(3+√5)/2)
還有問題?馬上發問,尋求解答。