高微問題求解 小弟第一次發問有錯誤請見諒?
1.
Let f:R→R be a function defined on R. Please give a definition for f(X) to be uniformly continuous.
2.
Let f:R→R be a function defined on R .Please use ε-δ language to define what it mean for the function f(X) to be continuous at X=1.
希望知道的大大能幫幫忙
1 個解答
- 老怪物Lv 73 年前最佳解答
Let f:R→R be a function defined on R. The function f is uniformly continuous over R
if for any ε > 0 there exists a δ > 0 such that whenever |x-y| < δ then |f(x)-f(y)| < ε.
在不是考慮整個數線, 而是一個實數的子集的情形:
A function f is said to be uniformly continuous over a subset D of R if:
for any ε > 0 there exists a δ > 0 such that
whenever |x-y| < δ, x, y in D, then |f(x)-f(y)| < ε.
至於在一點 x=a 連績 (你可代之以 x=1):
Let f:R→R be a function defined on R. The function f is said to be continuous at x=a
if for any ε > 0 there exists a δ > 0 such that whenever |x-a| < δ then |f(x)-f(a)| < ε.
而在一個實數子集逐點連續 (point-wise continuous):
A function f is said to be continuous over a subset D of R if
for any x in D, any ε > 0 there exists a δ > 0 such that
whenever |y-x| < δ then |f(y)-f(x)| < ε.
此定義與 uniformly continuous 不同在於:
point-wise continuous 是先決定一點再決定 δ > 0, 然後考慮 ,
因此 δ 可以與 x 有關, 也就是說不同 x 用不同 δ > 0; 而
uniformly continuous 則是在決定了 ε > 0 後就決定了 δ ,
然後要適用於所有的 x (及 y) in D, δ 不能隨 x 而調整.